
Model Parallelism

● Model parallelism
○ Inter-op parallelism

○ Intra-op parallelism

Computational Graph (Neural Networks) → Stages

Computational Graph

Devices (e.g., GPUs)

Device 1 Device 2 Device 3 Device 4

2

Computational Graph (Neural Networks) → Stages

Computational Graph

Device 1 Device 2 Device 3 Device 4

Stage

Devices (e.g., GPUs)

3

Execution & Data Movement

S
t
a
g
e

1

I
n
p
u
t

O
u
t
p
u
t

1

S
t
a
g
e

2

O
u
t
p
u
t

2

S
t
a
g
e

3

S
t
a
g
e

4

O
u
t
p
u
t

I
n
p
u
t

2Data

Transfer I
n
p
u
t

3Data

Transfer O
u
t
p
u
t

3

I
n
p
u
t

4Data

Transfer

Device 1 Device 2 Device 3 Device 4

Note: The time spent on data transfer is typically small, since we only

communicates stage outputs at stage boundaries between two stages.

4

Timeline: Visualization of Inter-Operator Parallelism

Device 4

Device 3

Device 2

Device 1

Time

Pipeline Bubbles

● Gray area () indicates devices being idle (a.k.a. Pipeline bubbles).

● Only 1 device activated at a time.

● Pipeline bubble percentage = bubble_area / total_area

= (D - 1) / D, assuming D devices.

5

Reduce Pipeline Bubbles via Pipelining Inputs

S
t
a
g
e

1

S
t
a
g
e

2

S
t
a
g
e

3

S
t
a
g
e

4

I
n
p
u
t

a

I
n
p
u
t

a

I
n
p
u
t

b

a

Device 4

a

Device 3

Device 2

Device 1

Time

b

a

b

c

a

b

c

d

b

c

c

d

d

d

Pipeline bubbles percentage
= (D - 1) / (D - 1 + N)
with D devices and N inputs.

I
n
p
u
t

b

I
n
p
u
t

c

I
n
p
u
t

a

I
n
p
u
t

c

I
n
p
u
t

d

I
n
p
u
t

a

I
n
p
u
t

b

Used in inference.

6

Training: Forward & Backward Dependency

S
t
a
g
e

1

S
t
a
g
e

2

S
t
a
g
e

3

S
t
a
g
e

4

I
n
p
u
t

Loss

Device 4

Device 3

Device 2

Device 1

Time

a

a

a

a

…

a

a

a

a

b

b

b

b

U
p
d
a

te

Forward Backward Forward

7

How to Reduce Pipeline Bubbles for Training?

● Device Placement

● Synchronous Pipeline Parallel Algorithms

○ GPipe

○ 1F1B

○ Interleaved 1F1B

○ TeraPipe

○ Chimera

● Asynchronous Pipeline Parallel Algorithms

○ AMPNet

○ Pipedream/Pipedream-2BW

8

Device Placement
S
t
a
g
e

1

S
t
a
g
e

2

S
t
a
g
e

3

S
t
a
g
e

4

Device 4

Device 3

Device 2

Device 1

Time

a

a
a

a

…

a

a
a

a

b

b

b

b

U
p
d
a

te

Forward Backward Forward

Idea: Slice the branches of a neural network into multiple stages so they can be

calculated concurrently.

Mir hoseini, Azalia, et al. " De vice placeme nt opt im ization with r einfor cement learning ." ICML 2017.

9

Device Placement: Limitations

Only works for specific NNs with

branches:

Device 4

Device 3

Device 2

Device 1

Time

a

a
a

a

…

a

a
a

a

U
p
d
a

te

Forward Backward

Device Utilization is still low:

Inception Module Contrastive Model

Other ConvNets Transformers

Note: device placement needs to be combined

with the other pipeline schedules discussed
later to further improve device utilization.

10

Synchronous Pipeline Parallel Schedule

Idea: Modify pipeline schedule to improve efficiency, but

keep the computation and convergence semantics exactly

the same as if training with a single device.

11

GPipe

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3 4 5

4 5

0

0

1

1

2

2

3

3 4 5

4 5

Forward (for input batch a)

3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

Backward (a)

U
p
d
a

te

0

0

1

…

Forward (b)

Huang , Yanping, et al. " Gpipe: Ef ficie nt tr aining of giant ne ural ne tworks using pipeline pa rallelism." Neur IPS 20 19.

Idea: Partition the input batch into multiple “micro-batches”. Pipeline the micro-

batches. Accumulate the gradients of the micro-batches:

Pipeline bubbles percentage = (D - 1) / (D - 1 + N)
with D devices and N micro-batches.

Example: Slice each input batch into 6 micro-batches:

12

GPipe: Experimental Results

#TPUs = 2 #TPUs = 4 #TPUs = 8

#Micro-batches = 1 1 1.07 1.3

#Micro-batches = 4 1.7 3.2 4.8

#Micro-batches = 32 1.8 3.4 6.3

Table: Normalized training throughput using GPipe with different number of

devices (stages) and different number of micro-batches M on TPUs.

Huang , Yanping, et al. " Gpipe: Ef ficie nt tr aining of giant ne ural ne tworks using pipeline pa rallelism." Neur IPS 20 19.

13

GPipe: Memory Usage

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3

3 2 1 0

U
p
d
a

te

0

0

1

4 5

4 5

5 4

…

0

0

1

1

2

2

3

3 4 5

4 5 3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

Forward (a) Backward (a) Forward (b)

Per-Device

Memory
Usage

Model

parameters

Intermediate

activation

= Parameters + Activation × #Micro-Batches

14

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3

3210

U
p
d
a

te

0

0

1

4 5

4 5

54

…
0

0

1

1

2

2

3

3 4 5

4 53210 54

3210 54

3210 54

Device 4

Device 3

Device 2

Device 1 0

0

1

1

2

2

3

3

3 2 1 0

U
p
d
a

te

0

0

1

4 5

4 5

5 4

…
0

0

1

1

2

2

3

3 4 5

4 5 3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

Forward (for input batch a) Backward (a) Forward (b)

GPipe Schedule:

Fan, Shiqing, et al. " DAPPLE: A pipelined d ata pa rallel appr oach f or tr aining lar ge mo dels." PPo PP 202 1.

Perform backward as early as possible

Same Latency
1F1B (1 Forward 1 Backward) Schedule:

15

1F1B Memory Usage

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3

3210

U
p
d
a

te

0

0

1

4 5

4 5

54

…
0

0

1

1

2

2

3

3 4 5

4 53210 54

3210 54

3210 54

Maximum

per-device
memory
usage

Fan, Shiqing, et al. " DAPPLE: A pipelined d ata pa rallel appr oach f or tr aining lar ge mo dels." PPo PP 202 1.

= Parameters + Activation × #Micro-Batches #Devices

16

Device 1

Device 2

Device 3

Device 4

Interleaved 1F1B

Stage 1

Stage 2

Stage 3

Stage 4

Idea: Slice the neural network into more fine-grained stages and assign multiple

stages to reduce pipeline bubble.

Nara yanan, De epak, e t al. " Ef ficie nt larg e-scale lan guage model t raining o n gpu clu sters u sin g meg atron-lm." SC 2021.

L1 L2 L3 L4 L5 L6 L7 L8

Stage 1

Stage 2

Stage 3

Stage 4

Device 1

Device 2

Device 3

Device 4

Stage 5

Stage 6

Stage 7

Stage 8

L1 L2 L3 L4 L5 L6 L7 L8

17

Interleaved 1F1B

Pro:
Higher pipeline efficiency with fewer
pipeline bubbles.

Con:

More communication overhead

between stages.

Pipeline bubbles percentage

= (D - 1) / (D - 1 + KN)

with D devices, K stages on each

device, and N micro-batches.

18

TeraPipe

…

Cat
s

<sos
>

ar
e

Cats

the

are

bes
t

the

<eos>

bes
t

Transformer layer 1

Transformer layer 2

Transformer layer N-1

Transformer layer N

Li, Zhuoh an, et al. " Ter aPipe : To ken-Leve l Pipeline Par allelism for Tr aining Lar ge-Scale Lan guage Models." ICML 2021.

Idea: The computation of an input token

only depends on previous tokens but

not future tokens for autoregressive

models.

Further reduce the bubble size by

pipelining within a sequence.

19

TeraPipe

Transformer layer 1

Transformer layer 2

Transformer layer 3

Transformer layer 4

Transformer layer 5

Device 1

Device 2

Device 3

Device 4

Device 5

Li, Zhuoh an, et al. " Ter aPipe : To ken-Leve l Pipeline Par allelism for Tr aining Lar ge-Scale Lan guage Models." ICML 2021.

20

Idea: The computation of an input token

only depends on previous tokens but

not future tokens for autoregressive

models.

Further reduce the bubble size by

pipelining within a sequence.

TeraPipe

Transformer layer 1

Transformer layer 2

Transformer layer 3

Transformer layer 4

Transformer layer 5

Device 1

Device 2

Device 3

Device 4

Device 5

Li, Zhuoh an, et al. " Ter aPipe : To ken-Leve l Pipeline Par allelism for Tr aining Lar ge-Scale Lan guage Models." ICML 2021.

21

Idea: The computation of an input token

only depends on previous tokens but

not future tokens for autoregressive

models.

Further reduce the bubble size by

pipelining within a sequence.

Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce
pipeline bubbles.

Device 4

Device 3

Device 2

Device 1 0

0

1

1

10

U
p
d
a

te

0

0

1

1

10

10

10Stage 1

Stage 2

Stage 3

Stage 4

Device 4

Device 3

Device 2

Device 1 2

2

3

3

32
U

p
d
a

te

2

2

3

3

32

32

32Stage 4

Stage 3

Stage 2

Stage 1

D4

D3

D2

D1 0

0

1

1

10

U
p
d
a

te

0

0

1

1

10

10

10S1

S2

S3

S4

2

2

3

3

32

2

2

3

3

32

32

32S4

S3

S2

S1

Pipeline bubbles percentage

= (D - 2) / (D - 2 + 2N)

with D devices and N micro-batches.

Li, Shigan g, and Tor sten Hoe fler. " Chimer a: eff icien tly training large-scale n eural n etworks with bidirectiona l pipelines." SC 21.
22

Extra copy of parameters &

extra synchronization.

Synchronous Pipeline Schedule Summary

Pros:

● Keep the convergence semantics. The training process is exactly the same

as training the neural network on a single device.

Cons:

● Pipeline bubbles.

● Reducing pipeline bubbles typically requires splitting inputs into smaller

components, but too small input to the neural network will reduce the

hardware efficiency.

23

Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.

Pros:

● No Pipeline bubbles.

Cons:

● Break the synchronous training semantics. Now the training will involve

stalled gradient.

● Algorithms may store multiple versions of model weights for consistency.

24

AMPNet

Idea: Fully asynchronous. Each device performs forward pass whenever free and

updates the weights after every backward pass.

Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." arXiv 2017.
Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." MLSys 2021.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to

generalize to larger datasets.

Device 3

Device 2

Device 1 0 2 3

320

4 5

4

0

0

2

2

3

4

4 5 320

320

3

6 7

6

Time

1

1

1

1

1

1

Initial weights

Updated weights

PipeMare: modify the

optimizer to improve
AMPNet convergence

25

Pipedream

Idea: Enforce the same version of weight for a single input batch by storing

multiple weight versions.

Convergence: Similar accuracy on ImageNet with a 5x speedup compared to

data parallel.

Nara yanan, De epak, e t al. " Pipe Dr eam: gener alized pipeline parallelism f or DNN tra in in g." SOSP 2 019.

Device 4

Device 3

Device 2

Device 1

0 1 2 3

3210

4 5

4

…
0

0

1

1

2

2

3

3 4

4 53210

3210 6

4

4

5

0 1 2 3 4 5 210 6 3 7

Weights

updated by 0

Weights

updated by 0,1

Weights updated

by 0,1,2 Initial weights

Initial weights

for backward

Con: No memory saving compared to single device case.

Time

26

Nara yanan, De epak, e t al. " Mem ory-eff icien t pipeline-par allel dnn t raining." ICML 2021.

Pipedream-2BW

Idea: Reduce Pipedream’s memory usage (only store 2 copies) by updating

weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)

Device 4

Device 3

Device 2

Device 1

0 1 2 3

3210

4 5

4

…
0

0

1

1

2

2

3

3 4

4 53210

3210 6

4

4

5

0 1 2 3 4 5 210 6 3 7

7

4

6

5

5
6

Time

Use weights updated

by input 0,1,2,3
starting input 7.

Use initial weights

for input 4,5,6.

27

Imbalanced Pipeline Stages

a

Device 4

a

a

a

Device 3

Device 2

Device 1 b

b

b

b

c

c

c

c

d

d

d

d

Pipeline schedules works best with balanced stages:

Balanced

Stages

a

Device 4

a

a

a

Device 3

Device 2

Device 1

Time

b

b

b

b

c

c

c

c

d

d

d

d

Imbalanced

Stages

28

Same single input latency

Frontier: Automatic Stage Partitioning

Reinforcement Learning Based (mainly for
device placement):

1. Mirhoseini, Azalia, et al. "Device placement optimization
with reinforcement learning." ICML 2017.

2. Gao, Yuanxiang, et al. "Spotlight: Optimizing device
placement for training deep neural networks." ICML 2018.

3. Mirhoseini, Azalia, et al. "A hierarchical model for device
placement." ICLR 2018.

4. Addanki, Ravichandra, et al. "Placeto: Learning
generalizable device placement algorithms for distributed
machine learning." NeurIPS 2019.

5. Zhou, Yanqi, et al. "Gdp: Generalized device placement
for dataflow graphs." Arxiv 2019.

6. Paliwal, Aditya, et al. "Reinforced genetic algorithm
learning for optimizing computation graphs." ICLR 2020.

7. …

29

Goal: Minimize maximum stage latency & maximize parallelization

Optimization (Dynamic Programming/Linear
Programming) Based:

1. Narayanan, Deepak, et al. "PipeDream: generalized
pipeline parallelism for DNN training." SOSP 2019.

2. Tarnawski, Jakub M., et al. "Efficient algorithms for device
placement of dnn graph operators." NeurIPS 2020.

3. Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel
approach for training large models." PPoPP 2021.

4. Tarnawski, Jakub M., Deepak Narayanan, and Amar
Phanishayee. "Piper: Multidimensional planner for dnn
parallelization." NeurIPS 2021.

5. Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-
Operator Parallelism for Distributed Deep Learning." OSDI
2022.

6. …

RL-Based Partitioning Algorithm

30Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." NeurIPS 2019.

State: Device assignment plan for a computational graph.

Action: Modify the device assignment of a node.

Reward: Latency difference between the new and old placements.

Trained with policy gradient algorithm.

Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices

and executed in a pipelined fashion.

Method General

computational graph

No pipeline

bubbles

Same convergence

as single device

Device Placement

Synchronous Schedule

Asynchronous Schedule

Stage Partitioning: Imbalance stage → More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning
32

Where We Are

● Model parallelism
○ Inter-op parallelism

○ Intra-op parallelism

Recap: Intra-op and Inter-op

x subrelu matmul

w2

matmul

w1

Strategy 1: Inter-operator Parallelism

x subrelu matmul

w2

matmul

w1

Strategy 2: Intra-operator Parallelism

This section:

1. How to parallelize an operator ?

2. How to parallelize a graph ?

34

Parallelize One Operator

for n in range(0, N):
for d in range(0, D):
C[n,d] = A[n,d] + B[n,d]

No dependency on the two for-loops.

Can arbitrarily split the for-loops on different devices.

Element-wise operators

= +C A Bn

d

Parallelize loop n

= +C A Bn

d

Parallelize both loop n and loop d a lot of

other variants
…

device 1 device 2 device 3 device 4

35

for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split
this for-loop

Matrix multiplication

= xC A Bi

j

Parallelize loop i

device 1 device 2 device 3 device 4 replicated

36

for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split
this for-loop

Matrix multiplication

device 1 device 2 device 3 device 4 replicated

k

k

Parallelize loop k

(got by all-reduce)

= xC A B

37

for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split
this for-loop

a lot of

other variants

…

Matrix multiplication

device 1 device 2 device 3 device 4

= xC Ai

j

Parallelize loop i and j

A: partially tiled

Device 1 and 2 hold a replicated tile

Device 3 and 4 hold a replicated tile

B = xAi

j

Parallelize loop i and k

C B

C: got by all-reduce
38

for n in range(0, N):
for co in range(0, CO):
for h in range(0, H):
for w in range(0, W):
for ci in range(0, CI):
for kh in range(0, KH):
for kw in range(0, KW):
C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]

Parallelize One Operator

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w

Simple spatial loops. Can be arbitrarily split.

Reduction loop. Need to accumulate partial results.

Stencil computation loops. Splitting these requires careful

boundary handling.

Reduction loops. But usually too small (<= 5) for parallelization.

39

Data Parallelism as A Case of Intra-op Parallelism

matmul (c)

b

a

Matmul Parallelization Type 1

communication cost = 0

matmul (c)

b

a

Matmul Parallelization Type 2

communication cost = all-reduce(c)

Replicated Column-partitionedRow-partitioned

x MSE

y

relu matmul

w2

matmul

w1

Forward Pass

Two “Type 1” matmuls: no communication

new_w2new_w1

matmul

matmul

MSE’

matmul

relu’

Backward Pass

One “Type 1” matmul: no communication
Two “Type 2” matmuls: require all-reduce

40

Re-partition Communication Cost

x

w1 w2

matmul matmulrelu

matmul relu matmul

w2

relu

Do not need re-

partition

matmul

w2

relu

…

Need re-partition

by all-gather

Replicated Column-partitionedRow-partitioned

Different operators’ parallelization strategies require different partition format of the same tensor

41

Re-partition Communication Cost

all-to-all

all-to-all

Different operators’ parallelization strategies require different partition format of the same tensor

Row-partitioned

Replicated

Column-partitioned

42

Parallelize All Operators in a Graph

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Pick a parallel strategy

of each operator

x relu matmul

w2

matmul

w1

Problem

Manual design

Randomized search
Dynamic programming
Integer linear programming

Solution

43

Important Projects

Model-specific Intra-op Parallel Strategies
- AlexNet

- Megatron-LM

- GShard MoE

Systems for Intra-op Parallelism
- ZeRO

- Mesh-Tensorflow

- GSPMD

- Tofu

- FlexFlow

44

AlexNet

Assign a group convolution layer to 2 GPUs

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks.” NeurIPS 2012

Result: increase top-1 accuracy by 1.7%

45

Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Shoeybi, Mohammad, et al. "Megatron-LM: Training multi-billion parameter language models using model parallelism."

Figure 3 from the paper：
How to partition the MLP in the transformer.

x gelu matmul

w2

matmul

w1

Replicated Column-partitionedRow-partitioned

dropout

Illustrated with the notations in this tutorial

all-reduce during forward

all-reduce during backward

46

GShard MoE

Result: a multi-language translation model with 600B parameters that outperforms SOTA

x x
batch
matmul

MoE
Layers

matmul

Normal
layers

Replicated Expert-partitionedRow-partitioned

X

Illustrated with the notations in this class

all-to-all re-partition communication

Lepikhin, Dmitry, et al. "GShard: Scaling giant models with conditional computation and automatic sharding." ICLR 2021
47

ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

Optimizer

States (12M)

Gradients

(2M)

Model

Weights (2M)

Memory

Cost

Communication

Cost

Data Parallelism Replicated Replicated Replicated all-reduce(2M)

ZeRO Stage 1 Partitioned Replicated Replicated all-reduce(2M)

ZeRO Stage 2 Partitioned Partitioned Replicated all-reduce(2M)

ZeRO Stage 3 Partitioned Partitioned Partitioned 1.5 all-reduce(2M)

Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC 2020

M is the number of parameters, N is the number of devices.

48

ZeRO Stage 2

Key Idea: all-reduce = reduce-scatter + all-gather

partial
gradients

gradients multiply-add multiply-add

momentum weights

all-reduce
new

weights

Data Parallelism

partial
gradients

gradients multiply-add multiply-add

momentum weights

reduce-scatter
new

weights

all-gather

ZeRO Stage 2

Same communication cost but save memory by partitioning more tensors

Replicated Partitioned

49

ZeRO Stage 3

ZeRO Stage 2

communication cost
= all-reduce

forward backward
optimizer

state update
weights
update

weights

reduce-scatter

all-gather all-gather

ZeRO Stage 3

communication cost
= 1.5 all-reduce

forward backward
optimizer

state update
weights
update

weights

reduce-scatter

all-gather

Replicated Partitioned

50

ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

Optimizer

States (12M)

Gradients

(2M)

Model

Weights (2M)

Memory

Cost

Communication

Cost

Data Parallelism Replicated Replicated Replicated all-reduce(2M)

ZeRO Stage 1 Partitioned Replicated Replicated all-reduce(2M)

ZeRO Stage 2 Partitioned Partitioned Replicated all-reduce(2M)

ZeRO Stage 3 Partitioned Partitioned Partitioned 1.5 all-reduce(2M)

Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC 2020

M is the number of parameters, N is the number of devices.

51

Mesh-Tensorflow

Shazeer, Noam, et al. "Mesh-tensorflow: Deep learning for supercomputers." NeurIPS 2018.

Map tensor dimension to mesh dimension for parallelism

Tensor dimension

Mesh dimension

Mapping

52

GSPMD

- Use annotations to specify partition strategy

- Propagate the annotations to whole graph
- Use compiler to generate SPMD (Single Program Multiple Data) parallel executables

Xu, Yuanzhong, et al. "GSPMD: general and scalable parallelization for ML computation graphs." arXiv 2021
53

Combine Intra-op Parallelism and Inter-op Parallelism

Computational Graph

Stage

Intra-op Parallelism

Inter-op Parallelism

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." SC 2021

Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." OSDI 2022

Device

Mesh

56

Intra-operator Parallelism Summary

- We can parallelize a single operator by exploiting its internal parallelism

- To do this for a whole computational graph, we need to choose strategies for

all nodes in the graph to minimize the communication cost

- Intra-op and inter-op can be combined

58

Other Techniques for Training Large Models

System-level Memory Optimizations

- Rematerialization/Gradient Checkpointing

- Swapping

ML-level Optimizations

- Quantization

- Sparsification

- Low-rank approximation

Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv 2016

Rajbhandari, Samyam, et al. "Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning." SC 2021.
Tang, Hanlin, et al. "1-bit adam: Communication efficient large-scale training with adam’s convergence speed." ICML 2021.

Shazeer, Noam, and Mitchell Stern. "Adafactor: Adaptive learning rates with sublinear memory cost." ICML 2018.
59

Thanks for Enrolling DSC 204A!

60

	Slide 1: Model Parallelism
	Slide 2: Computational Graph (Neural Networks) → Stages
	Slide 3: Computational Graph (Neural Networks) → Stages
	Slide 4: Execution & Data Movement
	Slide 5: Timeline: Visualization of Inter-Operator Parallelism
	Slide 6: Reduce Pipeline Bubbles via Pipelining Inputs
	Slide 7: Training: Forward & Backward Dependency
	Slide 8: How to Reduce Pipeline Bubbles for Training?
	Slide 9: Device Placement
	Slide 10: Device Placement: Limitations
	Slide 11: Synchronous Pipeline Parallel Schedule
	Slide 12: GPipe
	Slide 13: GPipe: Experimental Results
	Slide 14: GPipe: Memory Usage
	Slide 15: GPipe Schedule:
	Slide 16: 1F1B Memory Usage
	Slide 17: Interleaved 1F1B
	Slide 18: Interleaved 1F1B
	Slide 19: TeraPipe
	Slide 20: TeraPipe
	Slide 21: TeraPipe
	Slide 22: Chimera
	Slide 23: Synchronous Pipeline Schedule Summary
	Slide 24: Asynchronous Pipeline Schedules
	Slide 25: AMPNet
	Slide 26: Pipedream
	Slide 27: Pipedream-2BW
	Slide 28: Imbalanced Pipeline Stages
	Slide 29: Frontier: Automatic Stage Partitioning
	Slide 30: RL-Based Partitioning Algorithm
	Slide 32: Inter-operator Parallelism Summary
	Slide 33: Where We Are
	Slide 34: Recap: Intra-op and Inter-op
	Slide 35: Parallelize One Operator
	Slide 36: Parallelize One Operator
	Slide 37: Parallelize One Operator
	Slide 38: Parallelize One Operator
	Slide 39: Parallelize One Operator
	Slide 40: Data Parallelism as A Case of Intra-op Parallelism
	Slide 41: Re-partition Communication Cost
	Slide 42: Re-partition Communication Cost
	Slide 43: Parallelize All Operators in a Graph
	Slide 44: Important Projects
	Slide 45: AlexNet
	Slide 46: Megaton-LM
	Slide 47: GShard MoE
	Slide 48: ZeRO Optimizer
	Slide 49: ZeRO Stage 2
	Slide 50: ZeRO Stage 3
	Slide 51: ZeRO Optimizer
	Slide 52: Mesh-Tensorflow
	Slide 53: GSPMD
	Slide 56: Combine Intra-op Parallelism and Inter-op Parallelism
	Slide 58: Intra-operator Parallelism Summary
	Slide 59: Other Techniques for Training Large Models
	Slide 60: Thanks for Enrolling DSC 204A!

