Model Parallelism

e Model parallelism
o Inter-op parallelism
o Intra-op parallelism

Computational Graph (Neural Networks) — Stages

Computational Graph

~—

-88- T Na e

Devices (e.g., GPUs)

Computational Graph (Neural Networks) — Stages

e Computational Graph

'
1
1 P
I 1 e
1 1 G4
\ 1
\ /
\ / \
\ / \\
\\\ /// \\\~
. .
. .
S~o - /
_____ - ,
\ e
\\ __‘//
__ . ’r—
. Devices (e.g., GPUs) Re
/

Stage — .‘.\'. ... o

Device 1 Device 2 Device 3 Device 4

Execution & Data Movement

))))
| ol m
ol | ' Data || "~ Data ||™| | ™ Data '||Y| | ¥ £
S w 2 . w g + w = HR= a 2l
S M 2] T > Bl 8w 21T > || Bl @ m &) T > B @ B
2 g8 2218 NI IENEINES
= 7 3| Transfer || 5 v 3| Transfer: || = N 3| Transfer: || = N o
A
~— — — —
. Device 1 ! Device 2 Device 3 ; Device 4

Note: The time spent on data transfer is typically small, since we only
communicates stage outputs at stage boundaries between two stages.

Timeline: Visualization of Inter-Operator Parallelism

Dev?ce 1 Pipeline Bubbles
Device 2 «—
Device 3
Device 4
Time
e Gray area (indicates devices being idle (a.k.a. Pipeline bubbles).

e Only 1 device activated at a time.

e Pipeline bubble percentage = bubble area / total area
= (D - 1) / D, assuming D devices.

Reduce Pipeline Bubbles via Pipelining Inputs

) /R))
o “ U ~ o m © <
51 & 5 &0 515 & 5, @
Q © a © Q © aQ ©
c + c = < = < 7
H n — " = n H n
— — — —
/ Device 1 a b | c d
Used in inference. Dev?ce 2 a c|d “~_ Pipeline bubbles percentage
Device 3 a|b|c|d =(-1)/ (D-1+N)
Device 4 a|blc]|d with D devices and N inputs.

v

Time

Training: Forward & Backward Dependency

) '))
' Lmd L. 22MI=4 = % :%
+ () () () ()
S (o]0)] o0 o0 o]0]
a © © © © Loss
c + + + +
<] " | <= T | <= | T <= T«
-/ — — -/
Forward Backward Forward
Device 1 a a |, b
Device 2 a a § b
Device 3 a a S— b
Device 4 a a b

Time

v

How to Reduce Pipeline Bubbles for Training?

e Device Placement
e Synchronous Pipeline Parallel Algorithms
o GPipe
o 1F1B
o Interleaved 1F1B
o TeraPipe
o Chimera
e Asynchronous Pipeline Parallel Algorithms
o AMPNet
o Pipedream/Pipedream-2BW

Device Placement

Idea: Slice the branches of a neural network into multiple stages so they can be
calculated concurrently.

)
™ Forward Backward Forward
w
> o Device 1 a a g b
— Ve < Device 2 a a g b
v v Device 3 a a Q b
e]0) oo)
s) 5 Device 4 a a b
(V) N wn -
w »
» oD -
P Time
)
n
~—

Device Placement: Limitations

Only works for specific NNs with Device Utilization is still low:
branches: _
= B = T Forward Backward
S e—— B '_ Device 1 a a o
.......... I 3 “ ..:-..-.m., 'ﬂ | = 8 . Device 2 d d §
— ' I Device 3 a a S—
S— . Device 4 a a
Inception Module Contrastive Model

v

_ — e Time
£ = * :
r) - Gle=l=l- G :
. r BERT

r :) - & : Note: device placement needs to be combined
r -r s i with the other pipeline schedules discussed
= . -~ later to further improve device utilization.
€ Other ConvNets ¥ Transformers :

Synchronous Pipeline Parallel Schedule

Idea: Modify pipeline schedule to improve efficiency, but
keep the computation and convergence semantics exactly
the same as if training with a single device.

11

GPipe

Idea: Partition the input batch into multiple “micro-batches”. Pipeline the micro-
batches. Accumulate the gradients of the micro-batches:

Vig(x) = % 2:;1 VLg(x;)
Example: Slice each input batch into 6 micro-batches:

Forward (for input batch a) Backward (a) Forward (b)
Device 1 o(1(2|3[|4 |5 514(3|12|1]| 60 . 01
Device 2 o(1(2|3/[4]|5 514|132 |1|6 § 0
Device 3 0|11(2|3|14]|5 514 (3|2|1]|6 S—
Device 4 N 0112 (3|4(5|5|4|3|2|1]|6

4
v

\ Time

Pipeline bubbles percentage = (D - 1) / (D - 1 + N)
with D devices and N micro-batches.

12

GPipe: Experimental Results

Table: Normalized training throughput using GPipe with different number of
devices (stages) and different number of micro-batches M on TPUs.

#TPUs =2 #TPUs =4 #TPUs =8
#Micro-batches = 1 1 1.07 1.3
#Micro-batches = 4 1.7 3.2 4.8

#Micro-batches = 32 1.8 3.4 6.3

13

GPipe: Memory Usage

= Parameters + Activation x #Micro-Batches

Per-Device , /
Memory ?
Usage =
Intermediate
activation :
Model
parameters
Forward (a) Backward (a) Forward (b)
Device1 | @ |12 |3 (4|5 543210®01
Device 2 0112 |3|4]|5 514132160 @ (%)
Device 3 011(2|3|14]|5 514131216 S—
Device 4 o112 (3|4(5(5|4|3|2|1]|6

v

Time
14

GPipe Schedule:

Device 1
Device 2
Device 3
Device 4

Device 1
Device 2
Device 3

Forward (for input batch a) Backward (a) Forward (b)
@|1]2|3|4]|5 5(4]|3]2 oL@l
@|1]2(3|4]|5 514|321 IS 0
@(1]2|3[4]5 5/4|3|2|1]6@ £
@|1|2|3|4|5|5[4|3|2|1]|6®
Same Latenc
1F1B (1 Forward 1 Backward) Schedule: {7 / y
e 1|23 9041]5]2 3 4 oL@l
lef1]2 lo|3|1]4a|2]|5]3 4 I)
el1] |ol2]2]3]|2]4a[3]5]4 5 2
c|ola]1]2]2]3[3]4a]4a]5]5

Device 4

Perform backward as early as possible

v

15

1F1B Memory Usage

Maximum
per-device
memory
usage

A

= Parameters + Activation x #Micro-Batches

v

Device 1
Device 2
Device 3
Device 4

=

N

Ul

ok (Nv|w

NP lwWw ®

N (WD

w (N [P

w | B[N (U

Hlwluv|n

U1

Update

v

Time

16

Interleaved 1F1B

Idea: Slice the neural network into more fine-grained stages and assign multiple
stages to reduce pipeline bubble.

Device 4 | Stage 4

17

Interleaved 1F1B

Pro: Con:
Higher pipeline efficiency with fewer More communication overhead

pipeline bubbles.
between stages.

Device 1
Device 2 n 9 101112 n
Device 3 9101112“13“ n
Device 4 4 9“10“11“12@
e l Assign multiple stages

to each device
Device 1 [RRRsAE {2« AN PRI - o [Pipeline bubbles percentage
Device 2. e L MR R R R Rl = (D - 1) / (D - 1+ KN)
Device 3 WERRallls 142 s S HN L REee e SR BT \vith D devices, K stages on each
Device 4 [JIERR 2233 4« AICRRAREE" -+ 7"+ KR i oo RARMIE "4 device, and N micro-batches.
Time

Forward Pass [] Backward Pass o

TeraPipe

Idea: The computation of an input token
only depends on previous tokens but
not future tokens for autoregressive
models.

Further reduce the bubble size by
pipelining within a sequence.

Cat ar

? e

the bes <eos>

1

)

Transformer layer N

—

1

Transformer layer N-1

Transformer layer 2

T

Transformer layer 1

—f [[[)
<sos Cats are the bes
s 7

). " Ter aPipe : To ken-Leve | Fipeline Par allelsm for Training Lar ge-S cale Lan guage Models." ICML 2021

19

TeraPipe

Idea: The computation of an input token
only depends on previous tokens but
not future tokens for autoregressive
models.

Further reduce the bubble size by
pipelining within a sequence.

.
. Device 5 | Transformer layer 5 |
=
I Device 4 [Transformer layer 4]
R _——
' Device 3 [Transformer layer 3]
o —
' Device 2 [Transformer layer 2] :

ipe To ke-Leve | Fipsiine Par allelm for Training Lar ge-Scale Lan quage Models." ICML 2021,

20

TeraPipe

Idea: The computation of an input token
only depends on previous tokens but
not future tokens for autoregressive
models.

Further reduce the bubble size by
pipelining within a sequence.

Device 5

Device 4

Device 3

Device 2

Device 1

[Transformer layer 5
=
[Transformer layer 4
—
[Transformer layer 3
—

[Transformer layer 2

—7
L Transformer layer 1

—9

i ibe To ken-Leve | Fipaline Par allelim for Training Lar ge-Scale Lan guage Models.” ICML 2021,

21

Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce
pipeline bubbles.

Extra copy of parameters &

Device 1 (Stage 1) |@] [0| 1], h extra synchronization.

Device 2 %) 1 %) 1 ©

Device 3 o |1]e[\]1 8 /

Device 4 [Stage 4] elof1]1 p1 (1) (54 [e] [af2[2[3[3]e] [1],
':H:' >D2 0]2/1/3/2]0|3|1| |

D3 (s3] (s2] 2]0/3|1/0]2|1|3] |&

Device1 212133 o D421309112 3

Device 2 2 3|2 3 g /

Device 3 2l 5 2| |3 15 Pipeline bubbles percentage

Device 4 2 3 2 3 Y,

(D-2)/ (D-2+2N)
with D devices and N micro-batches.

22

Synchronous Pipeline Schedule Summary

Pros:

e Keep the convergence semantics. The training process is exactly the same
as training the neural network on a single device.

¥ Cons:

Pipeline bubbles.

Reducing pipeline bubbles typically requires splitting inputs into smaller
components, but too small input to the neural network will reduce the
hardware efficiency.

23

Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.
Pros:

e No Pipeline bubbles.
¥ Cons:

e Break the synchronous training semantics. Now the training will involve
stalled gradient.
e Algorithms may store multiple versions of model weights for consistency.

24

AMPNet

Idea: Fully asynchronous. Each device performs forward pass whenever free and
updates the weights after every backward pass.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to

generalize to larger datasets.
Updated weights \
Device 1 1 1 PipeMare: modify the
Device 2 1 1 optimizer to improve
Device 3 1)1 AMPNet convergence
Initial weights Time

Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." arXiv 2017.
Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." MLSys 2021. 25

Pipedream

Idea: Enforce the same version of weight for a single input batch by storing
multiple weight versions.

Convergence: Similar accuracy on ImageNet with a 5x speedup compared to
data parallel.

Con: No memory saving compared to single device case.

Weights Weights Weights updated
Initial weights updated by O updated by 0,1 by 0,1,2

AW — <
Device1 [@ |1]| 2| 3 (%) 411 512 6| 3 7
Device 2 W

Device 3 Initial weights
for backward

Device 4

v

Time

26

Pipedream-2BW

Idea: Reduce Pipedream’s memory usage (only store 2 copies) by updating
weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)

Use initial weights Use weights updated
for input 4,5,6. by input 0,1,2,3
/ starting input 7.
Device1 (@ |1 |2 | 3 (4|1 (5|2|6]|3 7| 4
Device 2 0112 013(1(4|2|5|3 6| 4|7
Device 3 01 (2113|243 514|6]|5
Device 4 |11 (1|2|2|3]|3 414 |5|5]|6

v

Time

27

Imbalanced Pipeline Stages

Pipeline schedules works best with balanced stages:

Device 1
Balanced Device 2
Stages

Device 3
Device 4

Same single input latency ——

Device 1
Device 2
Device 3

Imbalanced
Stages

Device 4

(@]

N |

«---p»

QIC|n (&

d

b

C

d

a

b

v

28

Frontier: Automatic Stage Partitioning

Goal: Minimize maximum stage latency & maximize parallelization

Reinforcement Learning Based (mainly for
device placement):

1.

2.

Mirhoseini, Azalia, et al. "Device placement optimization
with reinforcement learning." ICML 2017.
Gao, Yuanxiang, et al. "Spotlight: Optimizing device

placement for training deep neural networks." ICML 2018.

Mirhoseini, Azalia, et al. "A hierarchical model for device
placement." ICLR 2018.

Addanki, Ravichandra, et al. "Placeto: Learning
generalizable device placement algorithms for distributed
machine learning." NeurlPS 2019.

Zhou, Yanqi, et al. "Gdp: Generalized device placement
for dataflow graphs." Arxiv 2019.

Paliwal, Aditya, et al. "Reinforced genetic algorithm
learning for optimizing computation graphs." ICLR 2020.

Optimization (Dynamic Programming/Linear
Programming) Based:

1.

2.

Narayanan, Deepak, et al. "PipeDream: generalized
pipeline parallelism for DNN training." SOSP 2019.
Tarnawski, Jakub M., et al. "Efficient algorithms for device
placement of dnn graph operators." NeurlPS 2020.

Fan, Shiging, et al. "DAPPLE: A pipelined data parallel
approach for training large models." PPoPP 2021.
Tarnawski, Jakub M., Deepak Narayanan, and Amar
Phanishayee. "Piper: Multidimensional planner for dnn
parallelization." NeurlPS 2021.

Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-
Operator Parallelism for Distributed Deep Leaming." OSDI
2022.

29

RL-Based Partitioning Algorithm

State: Device assignment plan for a computational graph.
Action: Modify the device assignment of a node.
Reward: Latency difference between the new and old placements.

Trained with policy gradient algorithm.

State s, RL agent Mext state s,
Device 1 Policy
—»
Graph .
P neural — n:fx:':k)
Current network Device 2 Sample
N ——» .
node =] New
placement
! Reward r, = Runtime(s,.;) - Runtime(s,)

Runtime(s,) Runtime(s,.+)

Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learing." NeurlPS 2019.

Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices
and executed in a pipelined fashion.

Method General No pipeline | Same convergence
computational graph bubbles as single device
Device Placement X X
Synchronous Schedule X
Asynchronous Schedule X

Stage Partitioning: Imbalance stage — More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning

32

Where We Are

e Model parallelism
o Inter-op parallelism
o Intra-op parallelism

Recap: Intra-op and Inter-op

Strategy 1: Inter-operator Parallelism
I

|
X matmul | relu Hmatmuleub]
I

Strategy 2: Intra-operator Parallelism

R

TR e

This section:
1. How to parallelize an operator ?
2. How to parallelize a graph ?

34

Parallelize One Operator

Element-wise operators

for n in range(@, N): «----------==

—
-
-
-
==
-

for d in range(@, D): «
C[n,d] = A[n,d] + B[n,d]

device 1 device 2 device 3

Parallelize loop n

_ No dependency on the two for-loops.
Can arbitrarily split the for-loops on different devices.

device 4
Parallelize both loop n and loop d a lot of
other variants
n C = A + B
>

35

Parallelize One Operator

Matrix multiplication No dependency on the two spatial for-loops.
- ;5’ Can arbitrarily split the for-loops on different devices.
for i in range(@, N):* Piad
for j in range(@, M): “” Accumulation on this reduction loop.
for k in range(@, K)i¢-=----ooeouu——- Have to accumulate partial results if we split
C[i,3] = C[1,J] + A[1i,k] x B[k,J] this for-loop
device 1 device 2 device 3 device 4 replicated
Parallelize loop i (" - A
P Cy A,
C2 A,
C = A X B C =12 XB
3 3
X Cs Ay

36

Parallelize One Operator

Matrix multiplication No dependency on the two spatial for-loops.
- ;5’ Can arbitrarily split the for-loops on different devices.
for i in range(@, N):< Piad
for j in range(@, M): “” Accumulation on this reduction loop.
for k in range(@, K)i¢-=---—-- oo —- Have to accumulate partial results if we split
C[i,3] = C[1,J] + A[1i,k] x B[k,J] this for-loop
device 1 device 2 device 3 device 4 replicated

Parallelize loop k

C = A X B K C=[4, A; A3 A,] B, = A1B, + A3B; + A3B; + A4B,

(got by all-reduce) k

37

Parallelize One Operator

Matrix multiplication No dependency on the two spatial for-loops.
- ;5’ Can arbitrarily split the for-loops on different devices.
for i in range(@, N):< Piad
for j in range(@, M): “” Accumulation on this reduction loop.
for k in rangg(? K):« *--——--——s—-—- Have to accumulate partial results if we split
C[l:J] = C[lJJ] + A[l:k] X B[kJJ] thiSfOl’-lOOp
device 1 device 2 device 3 device 4
Parallelize loop i and | Parallelize loop i and k a lot of
other variants
C = A X B i C = A X B
J A: partially tiled J
Device 1 and 2 hold a replicated tile C: got by all-reduce

Device 3 and 4 hold a replicated tile %

Parallelize One Operator

2D Convolution

== Simple spatial loops. Can be arbitrarily split.

_-=" P _ Stencil computation loops. Splitting these requires careful
for n in range(@, N):“ _- =% boundary handling.
for co in range(@, CO):“ PP e

for h in range(@, H):« ™~ _-- - _ - - Reduction loop. Need to accumulate partial results.
for w in range(@, W):* -
for ci in range(@, CI):4~
for kh in range(@, KH):<--- -zz=- Reduction loops. But usually too small (<= 5) for parallelization.

for kw in range(@, KW):4~~
C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w 39

Data Parallelism as A Case of Intra-op Parallelism

D Replicated D Row-partitioned D Column-partitioned

Matmul Parallelization Type 1
communication cost =0

-

[a H matmul (c)]

Matmul Parallelization Type 2
communication cost = all-reduce(c)

=

[a H matmul (c)]

Forward Pass

Two “Type 1" matmuls: no communication

2
v
matmul relu matmul
\ |

matmul MSE’ /

1

Backward Pass
One “Type 1” matmul: no communication
Two “Type 2° matmuls: require all-reduce

40

Re-partition Communication Cost

Different operators’ parallelization strategies require different partition format of the same tensor

D Replicated D Row-partitioned D Column-partitioned
[X]—»[matmul]—»[r'elu

cTTETEEEEEET N
:{ i Do not pged re-
:[matmulHrelu ' partiion [r‘elu]—>[matmul]

e o o o o =

Need re-partition
by all-gather I

e o o o o =

41

Re-partition Communication Cost

Different operators’ parallelization strategies require different partition format of the same tensor

Replicated

O all-to-all S D

all-to-all
Row-partitioned Column-partitioned
42

Parallelize All Operators in a Graph

Problem

Pick a parallel strategy

of each operator ~

Sa

[meatmul]—»[relu]—»[matmul]

Minimize (computation + communication) +

Solution

Manual design
Randomized search
Dynamic programming
Integer linear programming

(re-partition communication)

43

Important Projects

Model-specific Intra-op Parallel Strategies
- AlexNet
- Megatron-LM
- GShard MoE

Systems for Intra-op Parallelism
- ZeRO
- Mesh-Tensorflow
- GSPMD
- Tofu
- FlexFlow

44

AlexNet

Result: increase top-1 accuracy by 1.7%

Assign a group convolution layer to 2 GPUs

197 138 FIirE g \dense
1 13
13 2 b 13 dense| |dense
192 192 128 Max Lo L
Max Gi— Max Y, pooling 0% 2048
pooling pooling

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks.” NeurIlPS 2012

45

Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Figure 3 from the paper : lllustrated with the notations in this tutorial
How to partition the MLP in the transformer.
g i'"'é'cLU(}I{) """ /’""z'"i)‘.{,;;LI(?E)m"\ DRepIicated DRow-partitioned DCqumn-partitioned
) ‘;
XA| L%-%? Y;Bl i
c | ! E
I | |
I - s
¥ matmulH gelu Hmatmul]—»[dr‘opoutJ
" IAl?A'&’] ’/} “\ 32 " A ?
b ONNNS >3 \\ ______________________ = I I
(a) MLP |
|

all-reduce during backward

all-reduce during forward

46
Shoeybi, Mohammad, et al. "Megatron-LM: Training multi-billion parameter language models using model parallelism."

GShard MoE

Result: a multi-language translation model with 600B parameters that outperforms SOTA

MoE Transfomer Encoder
with device placement

(acoder

1 (e

- A N (—. A0 A M
Fond Forward Feed Forw
r L]

e o A N — 200 & Maren

| 1
- s AL
"""" Jon At =

! == » I
Cating— | Tating
~ }— 3
. oL W — Asa &
Wlti-Hesd Devices WLt mesd
1lemtion At Lon
R
1 U emtadd L I M'
. al sabe i
shard | P

. Add & Norm — ad &

{ i
—1 L —
- Y ey 31 AlL Combire

— ———
Rodel-pacalle ¥

™ o ~
P— - L

ALl [

lllustrated with the notations in this class

D Replicated D Row-partitioned D Expert-partitioned

\ 4)
batch

[X]—b[matmul:T{ X]_’matmul
I

A
|
|

all-to-all re-partition communication

47

ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

M is the number of parameters, N is the number of devices.

Optimizer Gradients
States (12M) | (2M)

Data Parallelism | Replicated Replicated
ZeRO Stage 1 Partitioned Replicated
ZeRO Stage 2 Partitioned Partitioned

ZeRO Stage 3 Partitioned Partitioned

Model
Weights (2M)

Replicated
Replicated
Replicated

Partitioned

Communication
Cost

all-reduce(2M)
all-reduce(2M)
all-reduce(2M)

1.5 all-reduce(2M)

48

ZeRO Stage 2

Key ldea: all-reduce = reduce-scatter + all-gather ([JReplicated (] Partitioned
Data Parallelism
momentum weights
A \ 4

: all-reduce
g?:;ii’]c‘s {gr‘adients]—{ multiply-add Hmultiply-add} > wegzr:ts

ZeRO Stage 2
momentum weights

A

: reduce-scatter . all-gather
partial f . . _ . _ W _ new
SradfLane rLgradlentsH multiply-add Hmultlply ade d o

Same communication cost but save memory by partitioning more tensors 49

ZeRO Stage 3

ZeRO Stage 2 all-gather

weights

communication cost
= all-reduce

‘(optimizer

weights
reduce-scatter | state update

update

backward

ZeRO Stage 3

weights

all-gather

communication cost
= 1.5 all-reduce

‘(optimizer

weights
reduce-scatter | state update

update

backward

50

ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

M is the number of parameters, N is the number of devices.

Optimizer Gradients
States (12M) | (2M)

Data Parallelism | Replicated Replicated
ZeRO Stage 1 Partitioned Replicated
ZeRO Stage 2 Partitioned Partitioned

ZeRO Stage 3 Partitioned Partitioned

Model
Weights (2M)

Replicated
Replicated
Replicated

Partitioned

Communication
Cost

all-reduce(2M)
all-reduce(2M)
all-reduce(2M)

1.5 all-reduce(2M)

51

Mesh-Tensorflow

Map tensor dimension to mesh dimension for parallelism

batch = mtf.Dimension("batch", b) «
io = mtf.Dimension("io", d_io)
hidden = mtf.Dimension("hidden", d_h)

x.shape == [batch, io]

w = mtf.get_variable("w", shape=[io, hidden])
bias = mtf.get_variable("bias", shape=[hidden])
v = mtf.get_variable("v", shape=[hidden, iol)

h = mtf.relu(mtf.einsum(x, w, output_shape=[batch, hidden]) + bias)

y = mtf.einsum(h, v, output_shape=[batch, iol)

Tensor dimension

4 Mesh dimension
mesh_shape = [("rows", r), ("cols", c)]

computation_layout = [("batch", "rows"), ("hidden", "cols")] <

Shazeer, Noam, et al. "Mesh-tensorflow: Deep learning for supercomputers." Neur/PS 2018.

Mapping

GSPMD

- Use annotations to specify partition strategy
- Propagate the annotations to whole graph
- Use compiler to generate SPMD (Single Program Multiple Data) parallel executables

Partition inputs along group (G) dim.

+ inputs = split(inputs, 0, D)
Replicate the gating weights

+ wg = replicate (wg)
gates = softmax(einsum("GSM,ME->GSE", inputs, wg))
combine_weights, dispatch_mask = Top2Gating(gating_logits)
dispatched_expert_inputs = einsum(

"GSEC ,GSM->EGCM", dispatch_mask, reshaped_inputs)
Partition dispatched inputs along expert (E) dim.

oD =l LA e W B e

=)
+

dispatched_expert_inputs = split(dispatched_expert_inputs, 0, D)}
h = einsum("EGCM ,EMH->EGCH", dispatched_expert_inputs, wi)

b

Xu, Yuanzhong, et al. "GSPMD: general and scalable parallelization for ML computation graphs." arXiv 2021

53

Combine Intra-op Parallelism and Inter-op Parallelism

e Computational Graph

Oy AR N
:\ L v
L o
Stag;e ---- B T T
~-. Device - -
", Mesh / 'l/
Intra-op Parallelism { g g “ h E E “ h
X = = j

Inter-op Parallelism

Intra-operator Parallelism Summary
- We can parallelize a single operator by exploiting its internal parallelism

- To do this for a whole computational graph, we need to choose strategies for
all nodes in the graph to minimize the communication cost

- Intra-op and inter-op can be combined

58

Other Techniques for Training Large Models

System-level Memory Optimizations
- Rematerialization/Gradient Checkpointing
- Swapping

ML-level Optimizations

- Quantization
- Sparsification
- Low-rank approximation

59

Thanks for Enrolling DSC 204A!

	Slide 1: Model Parallelism
	Slide 2: Computational Graph (Neural Networks) → Stages
	Slide 3: Computational Graph (Neural Networks) → Stages
	Slide 4: Execution & Data Movement
	Slide 5: Timeline: Visualization of Inter-Operator Parallelism
	Slide 6: Reduce Pipeline Bubbles via Pipelining Inputs
	Slide 7: Training: Forward & Backward Dependency
	Slide 8: How to Reduce Pipeline Bubbles for Training?
	Slide 9: Device Placement
	Slide 10: Device Placement: Limitations
	Slide 11: Synchronous Pipeline Parallel Schedule
	Slide 12: GPipe
	Slide 13: GPipe: Experimental Results
	Slide 14: GPipe: Memory Usage
	Slide 15: GPipe Schedule:
	Slide 16: 1F1B Memory Usage
	Slide 17: Interleaved 1F1B
	Slide 18: Interleaved 1F1B
	Slide 19: TeraPipe
	Slide 20: TeraPipe
	Slide 21: TeraPipe
	Slide 22: Chimera
	Slide 23: Synchronous Pipeline Schedule Summary
	Slide 24: Asynchronous Pipeline Schedules
	Slide 25: AMPNet
	Slide 26: Pipedream
	Slide 27: Pipedream-2BW
	Slide 28: Imbalanced Pipeline Stages
	Slide 29: Frontier: Automatic Stage Partitioning
	Slide 30: RL-Based Partitioning Algorithm
	Slide 32: Inter-operator Parallelism Summary
	Slide 33: Where We Are
	Slide 34: Recap: Intra-op and Inter-op
	Slide 35: Parallelize One Operator
	Slide 36: Parallelize One Operator
	Slide 37: Parallelize One Operator
	Slide 38: Parallelize One Operator
	Slide 39: Parallelize One Operator
	Slide 40: Data Parallelism as A Case of Intra-op Parallelism
	Slide 41: Re-partition Communication Cost
	Slide 42: Re-partition Communication Cost
	Slide 43: Parallelize All Operators in a Graph
	Slide 44: Important Projects
	Slide 45: AlexNet
	Slide 46: Megaton-LM
	Slide 47: GShard MoE
	Slide 48: ZeRO Optimizer
	Slide 49: ZeRO Stage 2
	Slide 50: ZeRO Stage 3
	Slide 51: ZeRO Optimizer
	Slide 52: Mesh-Tensorflow
	Slide 53: GSPMD
	Slide 56: Combine Intra-op Parallelism and Inter-op Parallelism
	Slide 58: Intra-operator Parallelism Summary
	Slide 59: Other Techniques for Training Large Models
	Slide 60: Thanks for Enrolling DSC 204A!

