
Model Parallelism

● Model parallelism
○ Inter-op parallelism

○ Intra-op parallelism



Computational Graph (Neural Networks) → Stages

Computational Graph

Devices (e.g., GPUs)

Device 1 Device 2 Device 3 Device 4
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Computational Graph (Neural Networks) → Stages

Computational Graph

Device 1 Device 2 Device 3 Device 4

Stage

Devices (e.g., GPUs)
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Execution & Data Movement
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Note: The time spent on data transfer is typically small, since we only 

communicates stage outputs at stage boundaries between two stages.
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Timeline: Visualization of Inter-Operator Parallelism

Device 4

Device 3

Device 2

Device 1

Time

Pipeline Bubbles

● Gray area (         ) indicates devices being idle (a.k.a. Pipeline bubbles).

● Only 1 device activated at a time.

● Pipeline bubble percentage = bubble_area / total_area

= (D - 1) / D, assuming D devices.
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Reduce Pipeline Bubbles via Pipelining Inputs
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= (D - 1) / (D - 1 + N)
with D devices and N inputs.
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Training: Forward & Backward Dependency
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How to Reduce Pipeline Bubbles for Training?

● Device Placement

● Synchronous Pipeline Parallel Algorithms

○ GPipe

○ 1F1B 

○ Interleaved 1F1B

○ TeraPipe

○ Chimera

● Asynchronous Pipeline Parallel Algorithms

○ AMPNet

○ Pipedream/Pipedream-2BW
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Device Placement
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Idea: Slice the branches of a neural network into multiple stages so they can be 

calculated concurrently.

Mir hoseini, Azalia, et  al. " De vice  placeme nt opt im ization with r einfor cement  learning ." ICML  2017.
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Device Placement: Limitations

Only works for specific NNs with 

branches:

Device 4
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Forward Backward

Device Utilization is still low:

Inception Module Contrastive Model

Other ConvNets Transformers

Note: device placement needs to be combined 

with the other pipeline schedules discussed 
later to further improve device utilization.
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Synchronous Pipeline Parallel Schedule 

Idea: Modify pipeline schedule to improve efficiency, but 

keep the computation and convergence semantics exactly 

the same as if training with a single device.

11



GPipe
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Huang , Yanping, et al. " Gpipe:  Ef ficie nt tr aining of giant ne ural ne tworks using  pipeline pa rallelism."  Neur IPS 20 19.

Idea: Partition the input batch into multiple “micro-batches”. Pipeline the micro-

batches. Accumulate the gradients of the micro-batches:

Pipeline bubbles percentage = (D - 1) / (D - 1 + N)
with D devices and N micro-batches.

Example: Slice each input batch into 6 micro-batches:
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GPipe: Experimental Results

#TPUs = 2 #TPUs = 4 #TPUs = 8

#Micro-batches = 1 1 1.07 1.3

#Micro-batches = 4 1.7 3.2 4.8

#Micro-batches = 32 1.8 3.4 6.3

Table: Normalized training throughput using GPipe with different number of 

devices (stages) and different number of micro-batches M on TPUs.

Huang , Yanping, et al. " Gpipe:  Ef ficie nt tr aining of giant ne ural ne tworks using  pipeline pa rallelism."  Neur IPS 20 19.
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GPipe: Memory Usage
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= Parameters + Activation × #Micro-Batches
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GPipe Schedule:

Fan, Shiqing, et al. " DAPPLE: A pipelined d ata pa rallel appr oach f or tr aining lar ge mo dels." PPo PP 202 1.

Perform backward as early as possible

Same Latency
1F1B (1 Forward 1 Backward) Schedule:

15



1F1B Memory Usage
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Fan, Shiqing, et al. " DAPPLE: A pipelined d ata pa rallel appr oach f or tr aining lar ge mo dels." PPo PP 202 1.

= Parameters + Activation × #Micro-Batches #Devices 
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Device 1

Device 2

Device 3

Device 4

Interleaved 1F1B

Stage 1

Stage 2

Stage 3

Stage 4

Idea: Slice the neural network into more fine-grained stages and assign multiple 

stages to reduce pipeline bubble. 

Nara yanan, De epak, e t al. " Ef ficie nt larg e-scale lan guage model t raining o n gpu clu sters u sin g meg atron-lm."  SC 2021.

L1 L2 L3 L4 L5 L6 L7 L8

Stage 1

Stage 2

Stage 3

Stage 4

Device 1

Device 2

Device 3

Device 4

Stage 5

Stage 6

Stage 7

Stage 8

L1 L2 L3 L4 L5 L6 L7 L8
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Interleaved 1F1B

Pro: 
Higher pipeline efficiency with fewer
pipeline bubbles.

Con:

More communication overhead 

between stages.

Pipeline bubbles percentage

= (D - 1) / (D - 1 + KN) 

with D devices, K stages on each 

device, and N micro-batches.
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TeraPipe

… 

Cat
s

<sos
>

ar
e

Cats

the

are

bes
t

the

<eos>

bes
t

Transformer layer 1

Transformer layer 2

Transformer layer N-1

Transformer layer N

Li, Zhuoh an, et  al. " Ter aPipe : To ken-Leve l Pipeline Par allelism  for  Tr aining Lar ge-Scale Lan guage Models."  ICML  2021.

Idea: The computation of an input token 

only depends on previous tokens but 

not future tokens for autoregressive 

models.

Further reduce the bubble size by 

pipelining within a sequence.
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TeraPipe

Transformer layer 1

Transformer layer 2

Transformer layer 3

Transformer layer 4

Transformer layer 5

Device 1

Device 2

Device 3

Device 4

Device 5

Li, Zhuoh an, et  al. " Ter aPipe : To ken-Leve l Pipeline Par allelism  for  Tr aining Lar ge-Scale Lan guage Models."  ICML  2021.

20

Idea: The computation of an input token 

only depends on previous tokens but 

not future tokens for autoregressive 

models.

Further reduce the bubble size by 

pipelining within a sequence.



TeraPipe

Transformer layer 1

Transformer layer 2

Transformer layer 3

Transformer layer 4

Transformer layer 5

Device 1

Device 2

Device 3

Device 4

Device 5

Li, Zhuoh an, et  al. " Ter aPipe : To ken-Leve l Pipeline Par allelism  for  Tr aining Lar ge-Scale Lan guage Models."  ICML  2021.

21

Idea: The computation of an input token 

only depends on previous tokens but 

not future tokens for autoregressive 

models.

Further reduce the bubble size by 

pipelining within a sequence.



Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce 
pipeline bubbles.
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Pipeline bubbles percentage

= (D - 2) / (D - 2 + 2N) 

with D devices and N micro-batches.

Li, Shigan g, and  Tor sten Hoe fler. " Chimer a: eff icien tly training  large-scale n eural n etworks with bidirectiona l pipelines."  SC 21.
22

Extra copy of parameters & 

extra synchronization.



Synchronous Pipeline Schedule Summary

Pros:

● Keep the convergence semantics. The training process is exactly the same 

as training the neural network on a single device.

Cons:

● Pipeline bubbles.

● Reducing pipeline bubbles typically requires splitting inputs into smaller 

components, but too small input to the neural network will reduce the 

hardware efficiency.
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Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.

Pros:

● No Pipeline bubbles.

Cons:

● Break the synchronous training semantics. Now the training will involve 

stalled gradient.

● Algorithms may store multiple versions of model weights for consistency.
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AMPNet

Idea: Fully asynchronous. Each device performs forward pass whenever free and 

updates the weights after every backward pass.

Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." arXiv 2017.
Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." MLSys 2021.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to 

generalize to larger datasets.
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PipeMare: modify the 

optimizer to improve 
AMPNet convergence
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Pipedream

Idea: Enforce the same version of weight for a single input batch by storing 

multiple weight versions.

Convergence: Similar accuracy on ImageNet with a 5x speedup compared to 

data parallel.

Nara yanan, De epak, e t al. " Pipe Dr eam:  gener alized pipeline parallelism f or DNN tra in in g." SOSP 2 019.
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Nara yanan, De epak, e t al. " Mem ory-eff icien t pipeline-par allel dnn t raining."  ICML  2021.

Pipedream-2BW

Idea: Reduce Pipedream’s memory usage (only store 2 copies) by updating 

weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)
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Imbalanced Pipeline Stages 
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Frontier: Automatic Stage Partitioning

Reinforcement Learning Based (mainly for 
device placement):

1. Mirhoseini, Azalia, et al. "Device placement optimization 
with reinforcement learning." ICML 2017.

2. Gao, Yuanxiang, et al. "Spotlight: Optimizing device 
placement for training deep neural networks." ICML 2018.

3. Mirhoseini, Azalia, et al. "A hierarchical model for device 
placement." ICLR 2018.

4. Addanki, Ravichandra, et al. "Placeto: Learning 
generalizable device placement algorithms for distributed 
machine learning." NeurIPS 2019.

5. Zhou, Yanqi, et al. "Gdp: Generalized device placement 
for dataflow graphs." Arxiv 2019.

6. Paliwal, Aditya, et al. "Reinforced genetic algorithm 
learning for optimizing computation graphs." ICLR 2020.

7. …

29

Goal: Minimize maximum stage latency & maximize parallelization

Optimization (Dynamic Programming/Linear 
Programming) Based:

1. Narayanan, Deepak, et al. "PipeDream: generalized 
pipeline parallelism for DNN training." SOSP 2019.

2. Tarnawski, Jakub M., et al. "Efficient algorithms for device 
placement of dnn graph operators." NeurIPS 2020.

3. Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel 
approach for training large models." PPoPP 2021.

4. Tarnawski, Jakub M., Deepak Narayanan, and Amar 
Phanishayee. "Piper: Multidimensional planner for dnn 
parallelization." NeurIPS 2021.

5. Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-
Operator Parallelism for Distributed Deep Learning." OSDI 
2022.

6. …



RL-Based Partitioning Algorithm

30Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." NeurIPS 2019.

State: Device assignment plan for a computational graph.

Action: Modify the device assignment of a node.

Reward: Latency difference between the new and old placements.

Trained with policy gradient algorithm.



Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices 

and executed in a pipelined fashion.

Method General 

computational graph

No pipeline 

bubbles

Same convergence 

as single device

Device Placement

Synchronous Schedule

Asynchronous Schedule

Stage Partitioning: Imbalance stage → More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning
32



Where We Are

● Model parallelism
○ Inter-op parallelism

○ Intra-op parallelism



Recap: Intra-op and Inter-op

x subrelu matmul

w2

matmul

w1

Strategy 1: Inter-operator Parallelism

x subrelu matmul

w2

matmul

w1

Strategy 2: Intra-operator Parallelism

This section:

1. How to parallelize an operator ?

2. How to parallelize a graph ?
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Parallelize One Operator

for n in range(0, N):
for d in range(0, D):
C[n,d] = A[n,d] + B[n,d]  

No dependency on the two for-loops.

Can arbitrarily split the for-loops on different devices.

Element-wise operators

= +C A Bn

d

Parallelize loop n 

= +C A Bn

d

Parallelize both loop n and loop d a lot of

other variants
…

device 1 device 2 device 3 device 4
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for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split 
this for-loop

Matrix multiplication

= xC A Bi

j

Parallelize loop i 

device 1 device 2 device 3 device 4 replicated
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for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split 
this for-loop

Matrix multiplication

device 1 device 2 device 3 device 4 replicated

k

k

Parallelize loop k 

(got by all-reduce)

= xC A B
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for i in range(0, N):
for j in range(0, M):
for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split 
this for-loop

a lot of

other variants

…

Matrix multiplication

device 1 device 2 device 3 device 4

= xC Ai

j

Parallelize loop i and j 

A: partially tiled

Device 1 and 2 hold a replicated tile

Device 3 and 4 hold a replicated tile

B = xAi

j

Parallelize loop i and k 

C B

C: got by all-reduce
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for n in range(0, N):
for co in range(0, CO):
for h in range(0, H):
for w in range(0, W):
for ci in range(0, CI):
for kh in range(0, KH):
for kw in range(0, KW):
C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]  

Parallelize One Operator

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w

Simple spatial loops. Can be arbitrarily split.

Reduction loop. Need to accumulate partial results.

Stencil computation loops. Splitting these requires careful 

boundary handling.

Reduction loops. But usually too small (<= 5) for parallelization.
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Data Parallelism as A Case of Intra-op Parallelism

matmul (c)

b

a

Matmul Parallelization Type 1

communication cost = 0

matmul (c)

b

a

Matmul Parallelization Type 2

communication cost = all-reduce(c)

Replicated Column-partitionedRow-partitioned

x MSE

y

relu matmul

w2

matmul

w1

Forward Pass

Two “Type 1” matmuls: no communication

new_w2new_w1

matmul

matmul

MSE’

matmul

relu’

Backward Pass

One “Type 1” matmul: no communication
Two “Type 2” matmuls: require all-reduce
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Re-partition Communication Cost

x

w1 w2

matmul matmulrelu

matmul relu matmul

w2

relu

Do not need re-

partition

matmul

w2

relu

…

Need re-partition

by all-gather

Replicated Column-partitionedRow-partitioned

Different operators’ parallelization strategies require different partition format of the same tensor
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Re-partition Communication Cost

all-to-all

all-to-all

Different operators’ parallelization strategies require different partition format of the same tensor

Row-partitioned

Replicated

Column-partitioned
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Parallelize All Operators in a Graph

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Pick a parallel strategy

of each operator

x relu matmul

w2

matmul

w1

Problem

Manual design

Randomized search
Dynamic programming
Integer linear programming

Solution

43



Important Projects

Model-specific Intra-op Parallel Strategies
- AlexNet

- Megatron-LM

- GShard MoE

Systems for Intra-op Parallelism
- ZeRO

- Mesh-Tensorflow

- GSPMD

- Tofu

- FlexFlow

44



AlexNet

Assign a group convolution layer to 2 GPUs

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks.” NeurIPS 2012

Result: increase top-1 accuracy by 1.7%
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Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Shoeybi, Mohammad, et al. "Megatron-LM: Training multi-billion parameter language models using model parallelism."

Figure 3 from the paper：
How to partition the MLP in the transformer.

x gelu matmul

w2

matmul

w1

Replicated Column-partitionedRow-partitioned

dropout

Illustrated with the notations in this tutorial

all-reduce during forward

all-reduce during backward
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GShard MoE

Result: a multi-language translation model with 600B parameters that outperforms SOTA

x x
batch
matmul

MoE 
Layers

matmul

Normal 
layers

Replicated Expert-partitionedRow-partitioned

X

Illustrated with the notations in this class

all-to-all re-partition communication

Lepikhin, Dmitry, et al. "GShard: Scaling giant models with conditional computation and automatic sharding." ICLR 2021
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ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

Optimizer 

States (12M)

Gradients

(2M)

Model 

Weights (2M)

Memory

Cost

Communication

Cost

Data Parallelism Replicated Replicated Replicated all-reduce(2M)

ZeRO Stage 1 Partitioned Replicated Replicated all-reduce(2M)

ZeRO Stage 2 Partitioned Partitioned Replicated all-reduce(2M)

ZeRO Stage 3 Partitioned Partitioned Partitioned 1.5 all-reduce(2M)

Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC 2020

M is the number of parameters, N is the number of devices.
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ZeRO Stage 2

Key Idea: all-reduce = reduce-scatter + all-gather

partial
gradients

gradients multiply-add multiply-add

momentum weights

all-reduce
new

weights

Data Parallelism

partial
gradients

gradients multiply-add multiply-add

momentum weights

reduce-scatter
new

weights

all-gather

ZeRO Stage 2

Same communication cost but save memory by partitioning more tensors

Replicated Partitioned
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ZeRO Stage 3

ZeRO Stage 2

communication cost 
= all-reduce

forward backward
optimizer

state update
weights
update

weights

reduce-scatter

all-gather all-gather

ZeRO Stage 3

communication cost
= 1.5 all-reduce

forward backward
optimizer

state update
weights
update

weights

reduce-scatter

all-gather

Replicated Partitioned
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ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

Optimizer 

States (12M)

Gradients

(2M)

Model 

Weights (2M)

Memory

Cost

Communication

Cost

Data Parallelism Replicated Replicated Replicated all-reduce(2M)

ZeRO Stage 1 Partitioned Replicated Replicated all-reduce(2M)

ZeRO Stage 2 Partitioned Partitioned Replicated all-reduce(2M)

ZeRO Stage 3 Partitioned Partitioned Partitioned 1.5 all-reduce(2M)

Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC 2020

M is the number of parameters, N is the number of devices.
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Mesh-Tensorflow

Shazeer, Noam, et al. "Mesh-tensorflow: Deep learning for supercomputers." NeurIPS 2018.

Map tensor dimension to mesh dimension for parallelism

Tensor dimension

Mesh dimension

Mapping
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GSPMD

- Use annotations to specify partition strategy

- Propagate the annotations to whole graph
- Use compiler to generate SPMD (Single Program Multiple Data) parallel executables

Xu, Yuanzhong, et al. "GSPMD: general and scalable parallelization for ML computation graphs." arXiv 2021
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Combine Intra-op Parallelism and Inter-op Parallelism

Computational Graph

Stage

Intra-op Parallelism

Inter-op Parallelism

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." SC 2021

Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." OSDI 2022

Device

Mesh
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Intra-operator Parallelism Summary

- We can parallelize a single operator by exploiting its internal parallelism

- To do this for a whole computational graph, we need to choose strategies for 

all nodes in the graph to minimize the communication cost

- Intra-op and inter-op can be combined
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Other Techniques for Training Large Models

System-level Memory Optimizations

- Rematerialization/Gradient Checkpointing

- Swapping

ML-level Optimizations

- Quantization

- Sparsification

- Low-rank approximation

Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv 2016

Rajbhandari, Samyam, et al. "Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning." SC 2021.
Tang, Hanlin, et al. "1-bit adam: Communication efficient large-scale training with adam’s convergence speed." ICML 2021.

Shazeer, Noam, and Mitchell Stern. "Adafactor: Adaptive learning rates with sublinear memory cost." ICML 2018.
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Thanks for Enrolling DSC 204A!
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